Pages

Saturday, August 30, 2014

Orbital Zoning


For nearly sixty years humans have been sending objects into orbit. Some are weather satellites, others digital TV, and some are just junk. Though there is a huge volume of orbital space above Earth to put satellites in, orbits are in fact filling up and and are largely uncontrolled. As the private space industry grows the need to zone and regulate orbits for particular uses and organizations will be increasingly necessary to create a safe and effective orbital airspace.

To clarify this concept let's look at a scenario. Imagine a company, such as Bigelow Aerospace, has constructed an orbital hotel. The station sits in an orbit several hundred miles above Earth. Now another company developing a space BattleBots show decided to set up shop in the same orbit. This is allowed because no one owns the orbit or can prohibit anyone else form using it. Unfortunately, the Spacebots end up smashing each other to pieces in the orbit, much to the enjoyment of Earth spectators. But now there is an increase of debris which could easily puncture the soft hull of the space station. While the Spacebots would be held accountable for the damage the entire problem could have been avoided if the space station was able to zone its orbit for only human occupation. This is a slightly silly circumstance but the point is clear.

The same type of situation is the reason that factories can't be built in residential areas here on Earth. Similar rules must be set up for space. It will not be possible for space to continually be treated as an international free area like Antarctica. People and organizations actually want to go to space and get something from it, in this case a location.

Orbits are real estate, just as on Earth. There are certain locations better suited for certain tasks and some that are filled with dangerous litter. But there are a lot of orbits above the earth. The 3-D nature of the Void allows for this, as well as the fact that everything in orbit is moving and can be coordinated.

So how does one go about defining property in a place where there are no boundaries but simply the "idea" of locations?

Well the simple place to begin would be with altitude. Space could be divided into more altitude layers. Within those altitudes one could then define particular orbits just as radio bands are defined on earth. Particular altitudes could be reserved for earth observation, others for communications satellites, and then the areas above the debris-filled orbits could be reserved for space stations.

Then within the altitudes particular orbital trajectories could be defined. A company would be able to purchase these trajectories and maintain its hardware within them . But this opens the question, from whom does one purchase an orbit, something which transcends any type of Earth boundary.

The likely solution would be to allow for homesteading of defined orbits. Organizations and Countries could agree to allow ownership of particular orbits through a system of placing improvements in them. Then once ownership of an orbit has been established, through the International Homesteading System, the orbits can be sold. This does require international cooperation but that is the case in many aspects of Space Law and a topic for another time.

Enforcement of homesteading boundaries will be an issue. How to keep vehicles in their space and ensure no one trespasses will initially fall to ground-based tracking and monitoring of payloads as they are launched. But eventually a Space Authority will have to be established to act as a "traffic cop" for Earth orbits. It would go around checking the authorizations of certain satellites to be in certain areas and perhaps "towing" them when they are not.

The issue of spy satellites will also be a problem. These craft are some of the best kept secrets in the world. Governments will not want to register spy satellites or even relegate them to particular altitudes. But as slowly as orbital space is filling this issue may resolve itself before it has to be addressed for private needs.

Space will eventually have to have a system of organization or regulation. Responsibility for space debris and sharing of orbits will become too large of issues to simply ignore. Orbits will become crowded and at that point everyone will want to know what is theirs, else the industry could become quite confrontational. This can't happen because it would be self-defeating to the development of a Space Economy.


Note: A particular example of where zoning of orbits would have been useful would have been in the Chinese Satellite Missile Test incident. Again, it is an issue of international relations but if the Space-Faring nations had collaborated to allocate weapons testing orbits, other nations and organizations could have avoided those areas and now not have to dodge debris.

Saturday, August 16, 2014

Telepresence Astronaut

Robonaut 2
Humans are very expensive to maintain in space. Even as launch prices come down the cost of providing food, air, and water to a group of people will always be substantial. Especially in locations such as space stations where there are few natural resource to draw from.

In addition humans require a great deal of preparation and equipment in order to perform any kind of duty in space. It is not uncommon for astronauts to spend 2-3 hours gearing up for an 8 hour EVA. In commercial applications this time used to just "get ready for work" is unacceptable and un-maintainable. If a group of construction workers is sent to orbit the company that sponsored them does not want them to spend a third of their workday getting ready to start work.

The simple solution to all of these problems is to replace the humans. Robots can literally live in space without any of the extra amenities that humans need. But robots are continuously limited by their intelligence. While AI is developing it is still far from rivaling the problem-solving that a human can bring to the table. But robots are able to mimic our physical abilities quite well. Therefore the logical solution would be to create robots which are remotely operated by humans. Therefore one ends up with, basically, a robot with the mind of a human, which needs no food, water, or preparation to start work,

Virtual reality has progressed far enough that it is possible for a human to have a completely immersive experience while operating a robot. The controller can see through the eyes of the machine and watch as the robot arms mimic the controller's motions so perfectly that the person can feel as if they are in a suit in space.

This type of telecontrol eliminates for the need for people to go to space at all to perform duties. Thus greatly reducing cost and risk to any company which ventures into this sector. The robots would risk the launch and the environment, the controller would operate from 9 to 5 as if they were in orbit, but then have dinner at home.

Fortuitously, this technology has been an area of study for NASA for some time. Robonaut is essentially all that has just been discussed and is currently operating on the ISS in a limited capacity. Much of this research is in the public domain and could be utilized by a start-up wishing to develop a telepresence astronaut to fill the stated needs.

The Personal Satellite Assistant.
A small space robot
Of course, anyone wishing to pursue such an endeavor would not need to begin with a full humanoid and virtual reality set-up. The company could start with small space drones which could be remotely operated and used to inspect spacecraft and perhaps even act as a defense against large space debris. This is a relatively simple and inexpensive system to produce and deploy.

As the need for human workers or equivalents grows, with the advent of space stations and interplanetary craft, more advanced robots can be created. These could begin service as emergency responders and maintenance workers where time for human preparation is not available. This time advantage will be something any company would be able to flaunt around. If a space station develops a fault which must quickly be repaired from the outside which would one rather have? A human who needs two hours to get to the problem or a robot which needs two minutes.

Concerning business structure, such robots would likely be deployed on a rental basis. A space station being constructed could use one for assembly and inspection and when finished the robots would migrate to the next job. Since it needs no food or life support the machine could literally float in orbit for years waiting for the next job. When the emergency benefits of such robots are realized many will be purchased and installed permanently in structures just as one would install a fire extinguisher.

The beauty of such a business is that it is a solution which can be created and then just sit and wait for the demand. A company could send several robots into orbit and have them available when the first private structures are contracted. In the meantime they could be contracted to maintain some satellites and perform checks on existing space vehicles.

Essentially, such a robotics firm would likely begin as an orbital safety drone provider. Checking ships before they re-enter the atmosphere. Then as the construction industry grows they can develop into telepresence bodies for astronauts who are earth-bound or restricted to their space vehicle.. After that who knows? Machines with men inside could be created that prepare colony sites for human occupation.

A market exists now for such space safety drones. If they had existed earlier the Columbia accident could have been avoided. And since a robot is cheaper to send to space than a human the market for a telepresence astronaut will come and grow.

It is a sector with a proven need  and proven technology. All the ground work has been laid by other entities, it simply needs to be turned into a business. And until launch costs come far down and human equipment develops much further this will be an integral service in the space industry.

Sunday, June 29, 2014

Space Food

A company for the manufacture and distribution of space foodstuffs.

Within the next ten years a permanent commercial human population will be established in orbit and beyond. But how will these people be supported. An entire industry based upon the needs of these space residents and tourists will need to be created.

Food will be the most difficult consumable to supply to these space communities. People can live with stale air and recycled water but food has to be an experience filled with flavor  as well as nutrition. But creating something that meets those two criteria while, ideally, having a shelf life of months, without refrigeration, is a tall order. In the old days salted pork with an occasional orange was considered a complete meal, our more civilized society must create something better for our explorers.

Food in space has been a challenge that even NASA has not  met yet. While they have learned to freeze, vacuum seal, irradiate, and store food so that much of it will not spoil on a long trip, and even still have some flavor, there are some foods which we take for granted on earth that are considered  delicacies in orbit because they simply can’t be prepared or obtained in space. Baking bread is a supreme challenge which isn't completely solved.

All the deficiencies in the cuisine of the Void are opportunities. Food is something that is easily redesigned and adapted while also having infinite possibilities and potential. And the best part is the products are needed today and not only in space but right here at home.

Many facets of the space food industry exist. The potential for space gardens and specific tools for accomplishing the kind of culinary feats that are possible on Earth are all applicable, but for the purposes of this post we will focus on the opportunity for providing prepackaged food that is meant to be a meal “practically” ready to eat in orbit.

Here in the early days of the space industry which is heavily focused on tourism and government contracts the food will have to be of a special kind of hybrid. It will have to provide a pleasurable experience that is unique to space but also contain the nutrition to allow someone to live off of it. This will require that a space food manufacturer create an initial product that is almost nostalgic, the kind of freeze dried and in a toothpaste tube that tourists would expect on a trip so that they can feel like their image of astronauts. But this paste would still be something that someone who isn't  just in space to visit can live off of.

In order to cut on costs it would likely be something along the lines of a paste or solid bar that can be shaped and formed into whatever the customer needs. So just like ice cream, where you can use vanilla as a base for chocolate or strawberry, this Space Paste would contain all the nutrition a person needs but could be flavored and shaped into whatever the customer wants. Soylent is a current product that very nearly meets this criteria.

Such a product would also need to deal with yet another problem brought on by space food, boredom. How many people can say that they love to eat oatmeal morning noon and night. Food is something that adds excitement and interest to our lives. A space food that can be practical, in that is can be packed stored and provide nutrition, but also fills the human need for change and diversity in flavor, is exactly what is needed today. 

Fortunately, unlike so much of the space industry, the technology and products developed for space food will not trickle down to be used in the earth food industry as so many space developments are claimed to do. It would, instead, be immediately and directly marketable without having to redesign any part of it. Imagine extremely dense nutritional supplements that are able to be packed and stored for years while remaining light weight. Such products could be loaded into disaster relief trucks or into hiking backpacks. Any company that produces such wears would not have to depend solely upon the space industry to sustain itself.

The competition in space food will be fierce. While food designed for space is applicable on Earth, the reverse is also true to some extent. After all it would not take a great deal of effort for brand name protein bars and supplements to be customized for space.  And the infinite variation of food doesn't allow for much protection through intellectual property. But a small start-up can certainly gain ground by moving now and gaining contracts with the rising private launch companies , with paying customers who want their space peanuts during the flight.

A company dedicated to space food would be something that would certainly be able to diversify. While an initial product would want to be a catch-all design, all further developments could  range from old style toothpaste tubes of peanut butter to the creation of the most advanced recipes and cooking equipment anyone has ever seen. Really, the creation of food in space is one of the most difficult pieces of chemistry that anyone has ever had to undertake.

The market for space food has existed for some time. Space museums and other tourist traps have long provided freeze dried cuisine just like the astronaut used to make. In the actual industry the government space agencies have been the only providers of TV dinners fit for the space station. This won’t continue to be sufficient. Human traffic is only going to increase and NASA is continuing to lose their budget and is not prepared for food production in large quantities. Just as new launch vehicle providers need someone to make spacesuits they need someone to cook meals. It can and needs to be done today, and even if it means freeze drying your favorite smoothie blend, it would better than what the industry has available now.

Thursday, June 19, 2014

Astronaut Recruiter

An organization for the selection and recruiting of astronauts.

Astronauts have long held one of the most selective jobs in the world. They are the best of the best. But finding people that are able to live up to the expectations of the position is very difficult, and changing.

When humans were just beginning to go to space nearly all of the astronauts were chosen for their physical abilities and their skill with aircraft. Space and the vehicles to get there were such unknowns the astronauts were supposed to be able to deal with whatever was thrown at them. With the creation of space stations, astronauts changed play more of the role of the scientist than the test pilot. They perform space research without as many of the risks and unknowns that early astronauts faced.

Astronauts are continuing to change. Individual psychologies and skills are going to need to be mixed and matched depending upon missions. Like the equipment sent on a spaceship for a mission, the crews will need to be tailored for the task.

The typical means of selecting astronauts in the past has been to go through a process of applications, interviews, tests and evaluations. NASA can take over a year selecting new potential candidates. But, with human space missions on the rise and colonization in the future the long arduous methods of choosing astronauts will not continue to be feasible. When space missions occur on a regular basis it is just not practical to spend a year finding the perfect crew or drawing from a pool of perfect astronauts.

For example, Mars One is working to put together a crew for a one way mission to Mars. This crew will have to take care of itself. It can't be only engineers, or scientists, or doctors, or even one single gender. The crew must also be able to live with each other inside of a tin can for months or even years. They must be perfectly cohesive and comprehensively skilled for this particular adventure or it could all end in disaster.

Mars One is only just beginning to screen the last few hundred people after having accepted 200,000 applications over a period of several months. The selection of astronauts should not require such long selection periods. Imagine if Mars One hadn't needed to create and control the entire process itself but was able to talk to an Astronaut Recruiter that could pull together the perfect team for their space mission just as one would for a football team or company.

This organization would essentially be an astronaut Linked-In. A company that is constantly looking for, sorting, and selecting talent and personalities that can be combined to create the perfect space crew for a particular mission.

Such a company would likely begin life as something as simple as a website. Aspiring astronauts could complete a profile which would include information about accomplishments, physical characteristics and even basic psychological evaluations and other tests. Then companies that are looking to create a crew for some type of mission will be able to access that site in order to search in a semi-sorted pool of choices.

As the company grows it could continually develop its means of evaluating potential astronauts. Incorporating algorithms along the lines of dating sites for the creation of potential teams. Sorting people into groups based on skills and personal preferences.

Eventually the company could integrate face to face interviews and recruiting. Becoming the HR resource for the space industry. Such evolution would allow the company to be the "go to" sub-contractor of spacefarers. Then, instead of someone, like MarsOne, having to accept 200,000 applications it could simply call up the Astronaut Recruiter, give them mission specs then a recommendation of persons would be sent in return for a fee.

The "secret sauce" of an Astronaut Recruiter would be how it is able to evaluate potential crews psychologically and physically. For this reason the founders of such a company would likely be ex-psychologist or HR personnel that have learned how to tell when one person will fit a position or situation and another would not.

The revenue model for such a company would be two sided. Just as Linked-In charges members for a premium account an Astronaut recruiter could charge potential applicants for increased access to particular resources. The Astronaut Recruiter could also charge prospective employers for the search service rendered as with any employee search site or organization.

Currently, the market is not in dire need of a recruiter for astronauts. Though if it had existed two years ago it could have been a part of the Mars One search.

However, in coming years crews will increasingly need to be tailored. The men and women needed to go mine the Moon, work in orbit, or colonize Mars will all have to have very different combinations of characteristics, just as in any job. The need for someone who can construct a perfect space team will become very great and is something which can be begun today.

Wednesday, June 11, 2014

Space Sports

Until such a time as the Space Economy is able to produce materials and services that allow it to support itself, it will have to create products that provide something meaningful to the people on Earth. At this point, the space industry's transfer of material goods to and from space is not exactly a mass market. Even though they help to serve a mass market, (i.e. communication satellites) such activities do not immediately identify identify a space company as the provider of the service. If the space industry wishes to broaden its horizons it will have to create products and services that can be marketed to the more general population.

So what is a space product or experience that is out of reach of the normal person but can still be enjoyed and paid for by that individual? Well, an earth equivalent to this situation would would be professional football or basketball. Many people aspire to be great athlete but if it is out of their reach they are contented with simply being a fan of the experience. The creation of Space Sports would create an identical experience. Space Sports are an opportunity for the space industry to broaden its horizons beyond launch vehicles and government contracts.

A space sport would have to utilize zero gravity to its greatest potential. This means the players would have to be able to fly and maneuver within a large area. Think Ender's Game battle room. Normally, large spaces are difficult and expensive to attain in space. Even Bigelow modules would not do the trick. But it is not necessary to create an interior field for such a sport. With durable space suits and proper safety measures in place the "stadium" could just be a large cage in orbit that keeps the untethered players from flying into oblivion. Such a structure would simple to design, maintain, and deploy and would be magnitudes cheaper to build than a modern football stadium even with launch costs.

The sport itself would probably be a type of 3-D soccer, where the players pass a ball and attempt to put it through the other teams goal area. But there are no requirements for the sport, it could be dodgeball, or something where the teams have to catch robotic balls. This is a decision that would have to be made by the organization founding the sport.

Human players will be necessary. Since human spectators would not have the same connection to a competition of robots. This means that the facility will have to have attached living spaces for several dozen people. With launches priced at 60 million dollars, the teams will likely have to remain in orbit for the entire "season." Meaning a space station will need to be created at the "stadium" with life support and supplies on a scale that has never been attempted.

The cost of food and the construction of living space will be where the highest costs will come from. But these can be one-time costs if the station is outfitted with amenities like gardens and efficient recycling technologies that will minimize the need for re-supply. This way the station can be built and then becomes almost self-sustaining.

Sports are a great business because, once established, there are so many revenue sources. There are ticket sales, television contracts, advertising, and contracts with vendors. Nearly all of these money streams exist in space as well as on Earth. Television broadcasts of the "Space Matches" will be the primary source of income. As the tourist industry begins to blossom ticket sales will be an option. And, as far as vendors are concerned, for tourists to attend the matches, they will need to be fed and transported just as in stadiums on Earth. Partnerships with such space taxis and suppliers will be inevitable.

The risk involved with Space Sports is that they are not something that can be proven as "the next big thing." They would be an all or nothing gamble. But Space Sports have the potential to be a global phenomena devoid of cultural preference, since it would be the first new sport in nearly a hundred years to define the modern technological age. Its complete novelty would be its advantage. But if no one of the planet appreciates it, it will flop hard.

But the potential of the idea could be tested by simply building the "field" and then sending up a couple of teams to play a few televised games. The investment would be around 200 million dollars, for such a test, but is far less than creating an entire space station. If the response is favorable then the complete "stadium" and living area could be built.

Space Sports are something that will eventually come to pass. It is as inevitable as the colonization of Mars. the question is not "if" but "when." It's possible today to prove the concept with a few hundred million dollars. If successful it would give an added boost to the perception of the space industry and space itself and create an entirely new facet in the sports industry. And even though the investment is substantial, when a top professional football team has a value in the area of about 1 billion dollars, revenue of about 350 million dollars, and player expenses around 150 million, the risks and benefits of a Space Sport are nearly identical.

Saturday, May 31, 2014

Space Water Refinery

In space, water is liquid gold. It is the heart of all life and of many space technologies by serving as a source of rocket fuel. But how does one get water in space? Water is actually quite plentiful in our solar system. It exists as ice on Mars and the Moon, inside of some asteroids, and is actually a primary component in comets. But, for any of this ice to be made usable by spaceships and colonies, it has to be extracted, melted, and even broken apart at an atomic level. While extraction is being developed by mining companies, the actual refinement of water into either drinkable liquid or rocket fuel has yet to be commercially developed, but such a "Water Refinery" would be an incredibly integral part of a developing space economy.

Water is the very basis of life. Humans can only survive a matter of days without it. This makes it one of the primary consumables on any manned space mission. The trouble is, at this point the only source of water for spacefarers is the Earth. Any water any astronaut drinks has to be shipped to them on an incredibly expensive rocket. Certainly, once the water is in space it can be recycled many times and reused by travelers, but the fact that water had to be blasted into space in the first place is a practice that can't continue. As more people begin to operate in space the need for drinkable water will increase and it will not longer be viable to get it all from Earth.

That is just for drinking water. There is also a market for the creation of rocket fuel. Currently, numerous satellites fall to earth because they run out of gas. And, as planetary travel grows there will be the need to fuel a fleet of rocket ships. As before, fuel can be created on Earth and then launched into space to fuel all these craft. And with dropping launch costs that will an option. But, the components of water, hydrogen and oxygen, are actually the most efficient rocket fuel that exists.

The technology to split water into these elements has existed for many years and similar processes been researched for applications in Mars colonies by NASA. So, instead of shipping fuel from Earth it would actually be possible to just grab a passing comet and turn its water into rocket fuel at a fraction of the cost of launching it.

Of course, there are many operations that have to be in place before a refinery can begin work. The bodies with water have to be mapped. They have to be collected, that is, brought to the refinery. Then, once under control, the asteroid/comet actually has to have the ice mined from its rock and metal.

Fortunately, these are all operations that are being developed and perfected by existing space mining companies. Planetary Resources and Deep Space Industries are space start-ups that have begun to develop the technologies needed to mine asteroids and comets and even process the materials. They both expect to have operating hardware in space within the next decade. This will give the creators of a space refinery plenty of time to develop their own final product. And they will be able to focus on taking water ice and turning it into liquid water and rocket fuel.

The main resource required by such a facility will be power. It must have copious amounts of electricity available to melt the mined ice, run it through filters for drinking, and perform electrolysis on it to create rocket fuel. This means that the main part of such an operation will be its power plant.

Early on it will most likely run on large solar arrays either connected to the facility itself or provided by a space utility company. It may be possible, and certainly preferable, to use nuclear energy if such technology is allowed into space as the industry develops.

Deep Space Industries Mining/Refining Concept
While such a refinery will need storage for its product, that may be a flexible option depending upon other developments in the industry. It may be possible for the refinery to partner with space gas stations or tankers which will be able to handle the storage and delivery issues associated with such a venture. Though if the pockets of the company are deep enough it could become the equivalent of an oil company here on earth which handles every part of the production process. From extraction of the raw material to putting it in a customers tank.

So the overall operation of such a refinery would be something along these lines. Someone goes out and collects the raw water ice from asteroids and brings it to the refinery. The refinery, which operates in planetary orbit, either purchases the ice or enters some kind of shared profit system with the mining company. The refinery is equipped with the power and storage facilities it needs to process the ice into drinkable water and fuel. This is then sold to companies that wish to keep satellites in orbit longer or to power ships onto new worlds. The model is identical to an oil company and will require great cooperation between space companies since the creation of all levels of production simultaneously by a single entity would be far to expensive.

Though getting such a company started may not be as difficult as it seems. If one were looking to start small and grow to become "The Space Refinery" it would be prudent to begin by creating and manufacturing small life-support systems that can be used by single craft or small bases to make drinkable water and purify existing supplies. This would create demand for the company in the current space industry.

Then, as permanent bases and long range re-usable craft begin to be developed, the refinery company could develop the fuel creation system. The two variations of the technology could be used in places like early moon bases like a backyard still. Such a strategy would make the company a major contributor to the industry early on and give it the position it needs to implement a larger-scale independent refinery in space when the demand arises.

Drinkable water and rocket fuel are the two primary consumables for anyone that operates in space. Any spacecraft must have fuel and any human must have water. The water needed to meet both of these needs is present in the void of space and can be exploited. The only thing that is required is an individual(s) that will work to become the "Water Baron" of space by creating the water refineries needed to exploit this abundant and necessary resource.

Friday, May 30, 2014

Space Gas Station

 In order to create spacecraft, that can move around in Earth orbit and even to other planets, they have to have their tanks filled. Currently, any spacecraft in orbit goes until it runs out of fuel, then it plummets to the earth. Any manned spacecraft, like the ISS, must be refueled on a regular basis and is limited to Earth orbit since that is where the gauge hits empty for all current space vehicles. The creation of a "Space Gas Station" would create the ability to increase the operational longevity of current spacecraft as well as create a means for current capsules to top themselves off and move on into new missions.

If one is to look at some mission beyond Earth orbit, (Apollo or a Mars mission) normally, the procedure is to carry all the fuel required for the entire mission on a single launch vehicle. This is the equivalent to loading your car with all the fuel needed for a cross country trip. Such strategies greatly increase the cost of launch, especially when present prices are in the neighborhood of $10,000/lb. Certainly launches will become more economical in coming years as prices decrease, but there is still no reason to fill a vehicle with fuel when it could be filled with equipment or other supplies. True, the tanks will still exist, but the "Gas Station" would allow for smaller tanks on vehicles since journeys to fuel sources would be a bit shorter. Again, imagine a car going across country, but now with some gas stations along the way. Now you don't have to carry extra fuel or have such a large tank.

The primary issue with such a service, considering current launch technologies, is that the cost to lift the fuel for the "Gas Station" into orbit is identical to the cost of putting it up with the craft in the first place. For one-mission vehicles this is true. But what about satellites that need to maintain orbits, the ISS, an orbital taxi, or for the space shuttle to be boosted to a higher orbit, if it were still in service. In all of these cases the "Gas Station" makes a lot of sense. If a vehicle needs more fuel to continue a mission or to begin anew, then a location to refill is worth the price. Especially, when the other option is to organize a whole launch to refuel or build and launch an entirely new craft to replace the empty one.

For an example of a situation, where this would be usable today, imagine if a SpaceX Dragon capsule wanted to continue to Mars. Normally the capsule burns all of its fuel to reach orbit so that is its operational limit. If a "Gas Station" existed, the capsule could dock with it in orbit, fill up, and then fire its engines to break free of Earth gravity. This is, in fact, a maneuver that missions Like Mars One may need to consider but are only possible with a fuel station in place.

So the need for an orbital "Gas Station" certainly exists, even today. So what would it look like? If the Space Shuttle were still in operation one would assume that it could simply be one of the Shuttles' orange external tanks that was left in orbit and has since been refilled. But that is no longer an option. In the near future the creation of such a fuel depot would most likely require a series of launches with a Falcon Heavy hoisting filled tanks into orbit. These tanks could then either be combined into a single structure or spread throughout orbit to allow easier access to the fuel reserves.

In order to refuel craft, organizations would schedule dockings with the fuel stations through the operating company. Then they would fuel-up and pay based on the amount that they take. It would be identical to a normal Earth gas station.

In the beginning it would be necessary for the craft/organization in need of fuel to navigate to the fuel depot. But as the company operating the station grows it would be possible to implement mobile stations which go to where the fuel is needed or even to implement a team of drones to bring craft to it.

The technical challenges of such a project are significant. Rocket fuel is very hard to contain in large quantities for extended periods of time. Containing large quantities in orbit will be even more difficult. Then there is the problem of actually having the adapters needed to refuel the numerous variations of spacecraft. This will require the eventual creation on some type of standard across the industry.

Such an endeavor will require significant investment in early development and then the first launches. However, once the station is operational, the returns will come quickly, since the price of the fuel will be a markup of the the delivery cost to orbit. Such a station would likely only need to be emptied a few times to offset the cost of development and construction. One would have to determine the value, of the fuel, to organizations that want to give second chances to old craft, instead of launching new ones.

The expansion capabilities of such a fuel company would be unlimited. As the industry grows and space traffic increases multiple stations will need to operate in orbit and eventually around other planets. And as mining grows and water ice is brought back to Earth or the Moon the fuel stations can be filled with the refined hydrogen and oxygen. Thus reducing the price of the fuel.

These stations will become the waterholes of space. People will need and want to be near them. Because of this they could be the structures that space hotels and space docks are built off of in order to reduce the number of stops for human vehicles. Rental of such proximity space or connections will become lucrative for the company that owns the gas station.

Though the creation and implementation of an orbital fuel depot will be significant, it is a piece of infrastructure that will be so vital to the space industry that it will quickly pay itself off. It will be as important as the launch vehicles that carry the craft off of the Earth. While some billionaires are building space hotels and other the launch vehicles, it would not be a bad business decision to create a Space Gas Station.